Interaction Sites between Voltage-Sensor and Gate in BK Channels
نویسندگان
چکیده
منابع مشابه
Mg2+ Enhances Voltage Sensor/Gate Coupling in BK Channels
BK (Slo1) potassium channels are activated by millimolar intracellular Mg(2+) as well as micromolar Ca(2+) and membrane depolarization. Mg(2+) and Ca(2+) act in an approximately additive manner at different binding sites to shift the conductance-voltage (G(K)-V) relation, suggesting that these ligands might work through functionally similar but independent mechanisms. However, we find that the ...
متن کاملBK Channels The Spring between Sensor and Gate
K+ channels contain two main functional domains, an ion-selective pore and a sensor that determines whether the cytoplasmic pore gate is open or closed. In this issue of Neuron, Niu et al. provide compelling evidence that the link between sensor and gate is a remarkably simple mechanical spring.
متن کاملMg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels.
The voltage-sensor domain (VSD) of voltage-dependent ion channels and enzymes is critical for cellular responses to membrane potential. The VSD can also be regulated by interaction with intracellular proteins and ligands, but how this occurs is poorly understood. Here, we show that the VSD of the BK-type K(+) channel is regulated by a state-dependent interaction with its own tethered cytosolic ...
متن کاملDeletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels
Large conductance Ca2+-activated K+ channels (BK channels) gate open in response to both membrane voltage and intracellular Ca2+ The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca2+ sensor. How these voltage and Ca2+ sensors influence the common activation gate, and interact with...
متن کاملCoupling between Voltage Sensor Activation, Ca2+ Binding and Channel Opening in Large Conductance (BK) Potassium Channels
To determine how intracellular Ca(2+) and membrane voltage regulate the gating of large conductance Ca(2+)-activated K(+) (BK) channels, we examined the steady-state and kinetic properties of mSlo1 ionic and gating currents in the presence and absence of Ca(2+) over a wide range of voltage. The activation of unliganded mSlo1 channels can be accounted for by allosteric coupling between voltage s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2013
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2012.11.2561